Achieving human and ecosystem health benefits through integrated watershed management

Ama Wakwella

Carissa Klein (UQ-SEES), Amelia Wenger (UQ-SEES/WCS), Stacy Jupiter (WCS), Helen Mayfield (UQ-SEES, Public Health/QUT-Built Environment) Colleen Lau (UQ-Public Health) Aaron Jenkins (UniSyd/ECU, Public Health/Science)

Watersheds for people and ecosystems

Ecological Wellbeing

- Water quality
- Disease risk
- Biodiversity
 - Fisheries

Fiji as a case study

Expanding human developments within watersheds can have big impacts on **coastal ecosystems**

Diverse and sensitive coastal ecosystems are threatened by land-based pollution

Fiji as a case study

Expanding human developments within watersheds can have big impacts on **human health**

Endemic water-related diseases are associated with runoff, flooding, and watershed modification

Opportunity for co-management!

Can we find areas in Fiji where changing human activities might benefit both coral reefs and also disease mitigation?

Identifying high-benefit sub-catchments in Fiji

Aim to identify and rank sub-catchments where watershed modification is contributing to:

 Above average levels of water-related infectious disease;

AND

(2) Reductions in coral reef condition

Coral reef condition: multiplicative risk model

(1) Looking for sub-catchments contributing to reductions in coral reef condition

 Existing models in use for Fiji and Pacific

(2) Looking for sub-catchments contributing to high levels of leptospirosis and typhoid

(2) Looking for sub-catchments contributing to high levels of leptospirosis and typhoid

(2) Looking for sub-catchments contributing to high levels of leptospirosis and typhoid

Identifying high-risk sub-catchments in Fiji

Rank sub-catchments by finding

- Above average levels of typhoid;
- Above average levels of leptospirosis; &
- Reductions in coral reef condition.

Land-cover (type and "crop factor"),

rainfall, and soil data

Sediment and nutrient load (InVEST) Sediment Export = USLE * SDR Nutrient Export_p = modified load_p * NDR_p Fishing Pressure (Tulloch et al., 2016)

 $F_p = \delta_h - (1 - \delta_h) e^{-y_h f_p}$

High priority	> average increase in coral reef cover; &
	> average increase in probability of below average leptospirosis seroprevalence; &
	> average increase in probability of below average typhoid incidence
Moderate priority	Only two of the above
Low priority	Only one of the above
Limited potential benefit	< average increase in coral reef cover; &
	< 50% probability of below average leptospirosis seroprevalence; &
	< 50% probability of below average typhoid incidence; &

Identifying high-risk sub-catchments in Fiji

Ranking sub-catchments by comparing change in disease and coral reef condition within each sub-catchment to the overall average change

High risk	> average increase in coral reef condition; &
	> average decrease in leptospirosis metric; &
	> average decrease in typhoid metric
Moderate risk	Only two of the above
Low risk	Only one of the above
Limited potential	≤ average increase in coral reef condition; &
benefit	≤ average decrease in leptospirosis metric; &
	\leq average decrease in typhoid metric

Opportunity for comanagement!

Global

• International negotiations

Watershed

- Protection & restoration
- Agricultural best practices

Household

- Infrastructure improvements
- Health surveillance

Individual

• Individual behavior change

