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A part of the presentation will

be an interactive demo of GeNle

and helpful web tools
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ﬁayesian networks: Hepar Il Model \

The graphical part of a Bayesian network is a representation of
causal relations among the model variables

Bayesian networks lead to enormous savings in representation
of joint probability distributions

) History of Surgery in Choledocholthotomy Gallstones y i
Diabstes . et medications
abdominal pain
History of Injections in
transfusion the past History of 0
History of viral alcohol abuse Pressure in right
. upper qi Reactive hepatiti
hepatitis . . (O Toxic hepatitis ® Cerrplpi
() Hepatic steatosis O Hepatic fibrosis e present 2%||

present 4%|
absent 95% I:l absent 98% l

Most practical Bayesian (e
networks are discrete. e —

But aren’t most variables in
physical systems continuous?

. =

[Onisko et al.] 70 variables, 123 arcs, 2,415 independences,

2,139 numerical parameters (instead of over 270x1021!)
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Equation-based systems and graphical models

classsize = (nstud * cload) / (nfac * tload)
facsal = (oinc + tuition * nstud) / (nfac * (1 + overh)) «— Core equations
stratio = nstud / nfac
cload =15

tload = 6
< nstud = 22102 —— Equations for exogenous variables

nfac = 3006
oinc = 30000000
tuition = 12000
overh =0.48

Together they determine :
the structure of the model

Explication of the asymmetries

\ due to Herb Simon (early 1950s)
E ' 5
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r. Hybrid Bayesian networks ]

Family of directed graphs (a bigger picture)

classsize = (nstud * cload) / (nfac * tload)

facsal = (oinc + tuition * nstud) / (nfac * (1 + overh))
stratio = nstud / nfac
cload =15
< tload =6
nstud = 22102
nfac = 3006

oinc = 30000000
\__ tuition = 12000

Both, systems of equations and joint probability
distributions can be pictured by acyclic directed graphs.
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Spreadsheet models
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e They could also be viewed as
graphs

e Graphs would show causal
dependences among cells
(variables)

e Of course, for any practical
spreadsheet, we would
essentially get a spaghetti of
connections ©

e Systems of simultaneous
equations and spreadsheet
models are not the best we can
do

* Directed graphs seem to be

better as a user interface!



/Visual spreadsheets
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Marketing

budget

=

BAYESFUSION

» Fix almost everything that has
been wrong with spreadsheets

e Great, but | believe that they could
still be improved upon!

My favorite is Analytica (http://www.lumina.com/)
/
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A simultaneous structural equation-based
model cam be turned into a Bayesian network

ding remarks
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A model of heating and cooling
of buildings.

Two core equations, continuous
variables/distributions.
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Equations relating temperatures

before and after the damper:
Tma = Toa*ud + Tra*(l'ud)
If there is only cooling (u,.=0)

mflow_ma*spheat_air*(Tsa'Tma) = metcw*Spheat_water*(
and if there is only heating (u..=0)
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Temporal reasoning: Dynamic Bayesian networks

Dynamic Bayesian networks allow for tracking development of a
system over time and support decision making in complex
environments, where not only the final effect counts but also the

system’s trajectory.

Init Conditions Temporal Plate (20 slices)

Term Conditions
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High

iy
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Inspired by systems of
differential equations

(the ground work for this
was laid by lwasaki &
Simon in early 1990s)
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Metalog distributions
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Expressions Producing
Continuous Probability
Distributions
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Visualization of continuous probability distributions
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Il 704 data poinis (7_04%) in (-0.04, -0.02)

! ) A 3 Ak =
. I U S S L N U SR U i I S
I N g N O N O O~ S Sl ol Sl O

Log10(Sqrt(If(Uniform(0,1)<1/4,Lognormal(-1,0.3),Lognormal(0, 0.2))))
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The rest
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Concluding remarks

e Continuous variables and distributions are often
more natural than their discrete approximations

 The link between systems of simultaneous
structural equations and Bayesian networks is
often unknown or misunderstood

* Metalog distributions are worth looking at

 Probability Distribution Visualizer is a great
exploratory tool

y

https://metalog.bayesfusion.com/
https://prob.bayesfusion.com/

%
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/Thank you for your attention!

w

\ For technical inquiries please visit http://support.bayesfusion.com/for

BAYESFUSION

@ http://www.bayesfusion.com/
S bayesfusion
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BayesFusion
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