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Abstract

We present a generative model for spatial-
temporal data that describes geographically
distributed interactions between pairs of en-
tities. We develop an efficient approximate
algorithm to infer unknown participants in
an event given the location and the time of
the event. As a concrete application of the
proposed approach, we focus on the problem
of modeling inter—gang violence, where the
objective is to infer the identities of partici-
pants in violent inter-gang attacks, based on
the past observations of such attacks. We val-
idate the model on synthetic as well as real—
world data, and obtain very promising results
on the identity—inference task. Furthermore,
it is shown that combining both spatial and
temporal information yields better accuracy
than using either information separately.

1 Introduction

Spatial-temporal data describes processes or phenom-
ena that are extended both in space and time. A clas-
sical problem associated with spatial-temporal data
is tracking the trajectories of kinematic objects such
as missiles and vehicles. More recently, call records
have been used to map, track, and predict the move-
ment of cell-phone users. In general, the emergence
of various types of sensors has made it possible to
gather spatial-temporal data for numerous real-world
processes, which has made it imperative to have effi-
cient computational models for modeling and predict-
ing with spatial-temporal data.

In this paper, we consider a particular type of spatial-
temporal process — the sequence of violent events oc-
curring among rival street gangs. Specifically, we use
Los Angeles Police Departmen’s (LAPD) data on gang
related violent crimes that covers a period from 1999
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to 2002 in the Hollenbeck neighborhood of Los Ange-
les [8]. In this dataset, each entry describes a violent
incident that includes the date and time of the incident
as well as the latitudinal and longitudinal coordinates.
Furthermore, each record might also contain informa-
tion about the victim and/or the perpetrator of the
attack. Often, the latter type of information is not
available. On the other hand, knowing the identities
of the gangs involved in an attack would be potentially
helpful for predicting and /or preventing subsequent re-
taliatory attacks. Thus, the ability to infer the event
participants would help the law-enforcement agencies
to prioritize their resources efficiently for controlling
outbursts of violent activities.

One of the main characteristics of gang-related activ-
ities is that different events are not statistically inde-
pendent, but exhibit non—trivial correlations. In par-
ticular, recent observations suggest that events tend to
cluster both temporally and spatially. To account for
such correlations, here we suggest a generative model
that is based on self-exciting Hawkes process. Due to
the missing information about the participants, exact
inference and learning is intractable for even moder-
ately large datasets. Toward this end we develop an
efficient algorithm for learning and inference based on
the variational EM approach [I]. Our preliminary re-
sults on both synthetic and real-world data suggest
that the model is able to recover missing data with
reasonable accuracy.

2 Background

2.1 Predictive Models for Crime

The costs of crime can be substantial both in hu-
man and financial terms [5]. Not surprisingly, there
has been significant effort among criminologists to de-
velop approaches to predicting the spatial and tem-
poral distribution of crime, with the goal that law
enforcement resources may be directed to likely loca-
tions (and at likely times) to prevent crime. Crime
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hotspotting [2], capturing the fact that crime tends to
concentrate in some places and not others, and repeat-
victimization [3, [I1], tracing the regular recurrence of
crime against the same people or targets, have fea-
tured prominently in attempts to predict crime. How-
ever, many practical questions remain in these ap-
proaches. For the most part, predicting crime has pri-
marily been backwards-looking, assigning law enforce-
ment resources only to locations that have recently
experienced crime. The past is a good guide to the
present, but crime patterns evolve dynamically mean-
ing that today’s crime locations may not be identi-
cal to tomorrow’s [4]. It has also been the case that
predictive models have tended to use fixed model pa-
rameters based on mean system characteristics. We
address both of these issue here specifically in the case
of modeling inter-gang violence in Los Angeles.

3 Spatial-Temporal Model of
Inter-Gang Violence

Here we describe our spatial-temporal model for char-
acterizing interactions between a pair of entities. For
the spatial component of our model, we assume that
events occurring between two participants are likely to
be clustered in space. In the case of the gang violence
data, this assumption asserts that attacks between a
pair of gangs are likely to be geographically confined.

As stated above, the existence of non-trivial tempo-
ral correlations between the events precludes the use
of simple Poisson point process model. Instead, here
we will use a Hawkes Process, which is a variant of
a self-exciting process [6]. Self-exciting models have
been used extensively in earthquake modeling, where
a central event (earthquake) might excite other events
(aftershocks) [6]. A justification of this choice for the
inter-gang violence data is that an attack by a gang on
its rival is likely to cause a retaliatory response from
the victim.

3.1 Generative Model for Inter-Gang
Violence

We assume we have a set of events (e.g., gang at-
tacks) that are distributed in time and space. The set
of observation is the time, and location of events oc-
curring between the gangs. Further, we assume there
are M gangs, and that each event involves one of the
M (M — 1)/2 pairs among those gangs.

We model the sequence of events between the pairs by
a Hawkes Process [6]. Namely, we assume that the
intensity of events between the gangs ¢ and j has the

following form:
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where H; denote the history of events up to time t as
the set of all the events that have occurred before that
time. For simplicity, we omit H; in the expression of
rate function. Here p;; describes the background rate
of event occurrence that is time-independent, whereas
the second term describes the self-excitation part, so
that events in the past affect the probability of an
event in the near future. The overall rate A increases
as each event p at t, occurs, reflecting the retaliation
to a previous attack. Here we will use a two-parameter
family for the self-excitation term:

9ij(t — tp) = Bijwij exp{—ws;(t —t,)} (2)

Here B;; describes the weight of the self-excitation
term (compared to the background rate), while w;;
describes the decay rate of the excitation.

The generative process begins with the sampling of the
first time of the incident.

1. For each pair, sample the first time of the inci-
dent using an exponential distribution with rate
parameter f.

2. For each pair, sample the duration of time until
the next incident using Poisson thinning. Since we
are dealing with non-homogeneous Poisson pro-
cess, we use the so called thinning algorithm [7]
to sample the next time of the event. By repeat-
ing step 2, we obtain the timestamps of incidents
for each pair.

3. For every timestamp of a given pair we sample the
location of the incident. We assume the location
of incidents follows a Gaussian distribution.

Let us introduce binary indicator variables z;, for each
event n, so that z,, = 1 when the gangs p and ¢ are
involved in the n-th event, and 2, = 0 otherwise. To
simplify notation, from this point on we denote 2, as
z, where k enumerates one of the possible pairs. For
a sequence of N incidents, the joint probability of the
location r¥V, time t'* and the latent variables z}*V
can be written in the following form :
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where © is the set of model parameters, p; is time-
homogeneous exponential distribution, ps is non-
homogeneous exponential, and ps(-|z}) is Gaussian



when 2} = 1, and a constant otherwise:
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Here my, Y, are the mean and covariance matrix
of multivariate normal distribution that describes the
spatial distribution of events involving the k-th pair.
For simplicity, we assume that the off-diagonal ele-
ments of the covariance matrix are zero, thus discard-
ing correlation between latitudinal longitudinal coor-

dinates.

We focus on the temporal-only part in above equa-
tion [3| by ignoring the spatial component of the model.
The first component of temporal part follows the ex-
ponential distribution with fixed rate, and solely de-
termined by the background rate:
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The rate function from the 2nd event is determined by
the previous events, and changes over time:
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where the lower limit of integration #,(Z'"~1) is the
time of the most recent event prior to the n-th event
that involves the pair k.

Equations BJff] complete the definition of the model.
Due to the presence of latent variables z;!, there is
no closed-form expression for the likelihood of the ob-
served sequence of events. Instead, one has to resort
to approximate techniques for learning and inference,
which is described next.

4 Learning and Inference

The latent variables indicate assignments of pairs to
particular incidents. If sufficient labeled data was
available, then standard estimation techniques (such
as maximum likelihood estimation) can be used. How-
ever, this is not feasible when there is a substantial
amount of missing data, which is generally the case
with police records. In this particular dataset, at least
one of the participants is unknown for almost 70%
of incidents. The EM approach presented here deals
with this type of scenario. In our model, labeled data
is used by clamping the corresponding latent variables
to their true values. We rely on variational EM [I]
by positing a simpler distribution Q(X) over the la-
tent variables with free parameters for learning and

inference. The free parameters are adjusted so that
the distribution is close to the true posterior in KL
divergence.
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where X is the hidden variables, and Y is the observed
variables. In our case, X is the hidden identity of
gangs involved in the incident, whereas Y describes
the location and the time of the incident.

We introduce the following factorized variational
multinomial distribution, which are independent of
each other across steps and pairs:

Q(Z*N|®) = [ [ a(=}16") (8)
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where free variational parameters ¢} describe the
probability that the k-th pair is involved in the n-th
event. Note that the present choice of the variational
distribution discards correlations between past and fu-
ture incidents, thus making the calculation tractable.

Minimizing the KL-divergence between Q(X), and
P(X,Y) leads to the following approximate lower
bound for the log-likelihood:
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where @ is the set of variational parameters, and © is
the set of model parameters.

Variational EM algorithm works by iterating between
the E—step of calculating the expectation value using
the variational distribution, and the M—step of updat-
ing the model (hyper)parameters so that the data like-
lihood is locally maximized. The update equations
for the parameters are rather cumbersome and will be
provided elsewhere. The overall pseudo algorithm is
shown in Algorithm [1} Next we provide our results.

4.1 Variational E-step

In the variational E-step, we minimize the KL distance
over the variational parameters. Taking the derivative
of KL distance with respect to each variational param-
eter and setting it to zero, we obtain a set of equations



Algorithm 1 Variational EM
Size: consider total of NV events, K pairs
Input: data r'*V, t"N 7 of complete events
Start with initial guess of hyper parameters.
repeat
Initialize all 41V to L with unknown pairs
repeat
for n=1to N do
if the pairs of n-th event is unknown then
Update {3}" = f({g}1n=1, {G}m N, pm)
end if
end for
until convergence across all time steps
Update hyper parameters.
until convergence in hyper parameters

that can be solved. For the k-th component of varia-
tional parameter ¢ at time 7,
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In the summation of expectation of log Ay (t"; Z1" 1),

+ is contained when n > 7 as well as n = 7. For
certain time step when n = 7, since we are taking the
derivative with respect to ¢}, we need to compute the
expectation of A after time t7~1. Hence, we solve the

above equation using the equations below:
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Similarly, we can calculate the derivative with respect
to ¢) for the terms with n > 7.
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4.2 Variational M-step

The M-step in the EM algorithm computes the param-
eters by maximizing the expected log-likelihood found
in the E-step. The model parameters we are using are
my, X, Bk, and wg.

(12)

The re—estimation formulas for the spatial parameters,
(i.e., the mean and the variance of Gaussian distribu-
tion), are straightforward:

7
m; = Zf‘b(’;n (13)
n 'k
Nn(nn 2
Rt = Z”(bk(%” ¢nm’“’l“t) (14)
n 'k
(P — My jon 2
U]%,long _ Zn(bk( long k.l g) (15)

2n Ok

The re-estimation of the temporal parameters are
more involved. For instance, to estimate ug, we nul-
lify the derivative of the likelihood with respect to pg,

gy =0, which yields
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Similar equations for the parameters fj and wy are
omitted.

Unfortunately, the resulting equations do not allow
closed form solutions, so they have to be solved us-
ing numerical methods, such as the Newton’s method
employed here.

5 Experiments

In this section, we report on our experiments using the
generative model described above. Given a sequence of
events, where some information about participants is
missing, our goal is to reconstruct the missing informa-
tion. Below we provide an evaluation of our algorithm
on both synthetic and real-world data.

5.1 Synthetic data

Here we report our experiments with synthetically gen-
erated data. To compare the performance of our model
with previous approaches, we follow the experimental
set-up proposed in [9], were the authors used temporal-
only information for reconstructing missing informa-
tion in synthetically generated event data. In partic-
ular, [9] suggested an alternative to maximum likeli-
hood (ML) estimation, by replacing the (combinato-
rial) ML objective by an appropriately defined energy
function over relaxed continuous variables. They then
perform constrained optimization of the new objective
function using ', 12 normalization for the relaxed vari-
ables. Although their method does not assign proper
probabilities to the various timelines, it can provide a
ranking of most likely participants.

Table [I] shows the overall performance of estimating
4 incomplete events (unknown actors) in 40 events of



Table 1: Total of N = 40 events between 6 pairs. Only
4 events have unknown participants. The parameters
are i = 10~2days™!, w = 10~ 'days~! and 8 = 0.5

Method Accuracy
Exact ML 473 %
max [! 47%
max [2 47.1%

Variational EM  46.9%

6 pairs. For our algorithm the results are averaged
over 1000 runs. The top method is the exact infer-
ence, while as the second, and third are from using
the optimization problem with ', [?-normalization re-
spectively. Note that all four methods perform almost
identically. Also we see that the result is remarkably
higher than the random baseline 1/6, where each pair
is selected randomly. We would like to emphasize that
the above results rely on temporal information only.
As we will see below, including spatial information will
improve the results, often significantly.

Table 2: Total of N = 40 events between 6
pairs, with different fraction of unknown partici-

pants: {10%,25%,50%}. The parameters are pu =
10 2days™ !, w = 10"'days~' and 3 = 0.5

Fraction of Unknown Accuracy

10% 46.9 %

25 % 38.1%

50 % 33.7%

Next, we examine the impact of more missing informa-
tion on the accuracy of inference using temporal-only
information. The results are presented in Table
where we vary the fraction of events with unknown
participants from 10% to 50%. Although the accuracy
deteriorates, we note that even when the half of the
events miss participant information, the accuracy of
the model predictions are still well above the random
baseline ~ 16%.

In our next set of experiments we we examine the
relative importance of spatial and temporal parts by
comparing three variants of our algorithm that use 1.
Temporal only data (T'), 2. Spatial-only data (.5); 3.
Combined spatial and temporal data (ST). For the
spatial component of the data, we use six multivari-
ate normal distributions with the center of each on
the vertex point of hexagon (for all 6 pairs). We fix
the side length of the hexagon to 1, and analyzed how
varying the standard deviation of the normal distribu-

tion affects the overall performance. Specifically, we
varied the standard deviation o from 0.2 to 4, and av-
eraged results over 100 times for each case for spatial
only and temporal+spatial. As expected, the relative
importance of the spatial information decreases when
increasing o. In the limit when o is very large, loca-
tion of an event do not contain any useful information
about the participants, so that the accuracy based on
spatial information only should converge to the ran-
dom baseline 1/6.

Average correct estimate

I spatial+temporal
I spatial

80

701

60

50
Temporal Only

40

301

Correct estimate (%)

20

2

-1 0 1
Iog2 of standard deviation

Figure 1: Average accuracy of 100 trials respect to
various settings of standard deviations. Blue bar is
from the inference based on spatial temporal data, and
red bar is from the inference based on spatial data.
Blue line is from the previous experiment which only
used temporal data

On the other hand, for small values of o, the spa-
tial information helps to increase accuracy. Indeed,
Figure [I| shows that inference using combined spatial-
temporal data produces more accurate results for the
whole range of the values of o.

5.2 Real-World data

Next we describe our experiments on real-world data-
set collected in the Hollenbeck division of Los Angeles
from in 1999 to 2002.

5.2.1 Description of the data

Hollenbeck is a 15.2 square mile (39.4 km2) policing di-
vision of the Los Angeles Police Department (LAPD),
located on the eastern edge of the City of Los Ange-
les, with approximately 220,000 residents. Overall, 31
active criminal street gangs were identified in Hollen-
beck between 1999-2002 [10]. Only 29 were still active
by the end of 2002. These 29 gangs formed at least



66 unique rivalries, which are responsible for the vast
majority of violent exchanges observed between gangs.
Between November 14, 1999 and September 28, 2002
(1049 days), there were 1208 violent crimes attributed
to criminal street gangs in the area. Of these, 1132
crimes explicitly identify the gang affiliation of the sus-
pect, victim, or both. The remaining events include
crimes such as shots fired which are known to be gang
related, but the intended victim and suspect gang is
not clear. For each violent crime, the collected in-
formation includes the street address where the crime
occurred as well as the date and time of the event [10] ,
allowing examination of the spatial-temporal dynamics
of gang violence. Due to computational complexity, we
ignore the causal relation between two incidents which
are separated from each other by more than 3 weeks.
This assumption also agrees with the Hawkes intensity
function which decays exponentially over time.

Experiments with most active pairs We first ex-
tract the events which are related to the three most
active rivalries : (Eastlake-Clover), (OPAL ST-VNE),
and (CUATRO FLATS-TMC). In Figure we de-
pict the locations of the incident color coded by one
of three pairs, while Figure depicts the temporal
timeline of the attacks between different pairs.

Since each rivalry shows strong pattern in spatial do-
main, the inference only using spatial information is
fairly good. But there were 4 events which was es-
timated incorrectly. We expect that adding tempo-
ral information will yield better estimate. Figure 2]
(right) shows that the temporal data is highly clus-
tered. Combining the temporal and spatial informa-
tion, we were able to recover a single event to the cor-
rect rivalry. Hence, when the localization is strong,
having temporal feature slightly increases the accu-
racy. This trend was shown in the result from the
simulation on synthetic data. In the experiment us-
ing synthetic data, the improvement became smaller
as standard deviation decreases(highly localized).

Experiments involving all gangs 31 active gangs
which had more than 4 crime with in the period, and
40 pairs which had at least two crimes between each
other were considered as candidates in the whole data.
Of the data 7.33% misses the information of both
gangs in a pair, 62.07% only knows one of two gang,
which is mostly victim. Only 30.6% of the events con-
tain information about both participants. Three lo-
cations which are isolated from clusters have been re-
moved for estimating the means, and variance of Gaus-
sian through our Experiment II. Our objective is to
infer the unknown gangs with better estimates of the
parameters. For this specific experiment we only use
30.6% of the whole data where we can compare our in-
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Figure 2: Location (a) and timeline (b) plot of the in-
cidents involving three most active rivalries. Different
colors represent different pairs.

ference exactly to the original information. From this
point, we denote this data as ‘all known’ data.

With all the information of pairs and their locations
and time for the all known data, we compute the mean
and variance of locations for each pair. The inference
using only spatial data, which is better than the in-
ference using only temporal data is set as a baseline
to compare. The most likely pairs for each incidents
were picked based on the inference using spatial data,
assuming the information of pairs are hidden. We com-
pared our most likely pairs to the actual ones and the
overall accuracy was 53.04%.

The top histogram in Figure [3] depicts the number of
incidents between different pairs. It shows that in-
active pairs which had only two incidents outnumber
active pairs. Furthermore, the pairs that have only a
few attacks between them, do not exhibit well-defined



n (&) w N
o o a o
T T T
I

number of incidents
n
=]

0 5 10 15 20 25 30 35 40
pair ID

sum of variance of longitude and latitude

0 5 10 15 20 25 30 35 40
pair ID

Figure 3: Number of known incidents for each pair
(top) and its sum of variance of longitude and latitude
(bottom)

spatial clustering, with higher variance in locations of
incidents. This can be partly attributed to the fact
that attacks between gangs that do not have intense
rivalries are mostly random, as opposed to the patterns
of attacks between gangs that have intense rivalries. In
the latter case, self-excitation (i.e., retaliation) is likely
to play a greater role.

To see how our method can recover missing data better
than the inference based on spatial data, we compare
our inference to the baseline. Further, we compare
our result to the other inference of which the tempo-
ral process follows homogenous Poisson process while
the spatial process is the same as ours. For this ex-
periment, we assume the spatial parameters: mean
and variance of Gaussian are given, which is the same
setting of baseline, while as temporal parameters: pa-
rameters of Hawkes process are being estimated in the
algorithm. We assume some of the portion of the data
as hidden, and try to recover based on their location,
and other incidents around the given time. By con-

trolling the ration from 10, to 70%, we compare our
most likely pairs to the actual pairs, and compute the
average count of correct inference. Each experiment
was repeated 20 times by selecting incidents randomly.
Figure 4] shows that as we infuse more information, we
obtain better estimate. Besides, over a wide range, our
method shows better performance than the baseline.

70
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% of missing labels (p)

Figure 4: Average accuracy for different fraction of
unknown participants. The horizontal line is the ac-
curacy for the spatial-only model.

So far, we have limited our experiments to the 30.6% of
data that contain events for which both participants
are known. In our final set of experiments, we used
the model parameters learned with the 30% of data
as an input, and applied it to the dataset that also
includes events that contain one unknown participant
(about 60% of the data set). In particular, we assumed
that all the participants in this 60% are unknown, and
examined how well the model is able to infer those
participants.

As a baseline, we again use the algorithm that uses
spatial-only information. We compare our counting to
the baseline which is shown in Table Bl The result
shows our model achieves better accuracy than the
baseline. However, the accuracy of this experiment
cannot be compared to the accuracy of the previous
experiment with selected whole data. In this experi-
ment, when one of the pair contains known gang, it
was counted as correct, while as in the previous exper-
iment, both of the gangs in the pair should have been
in the actual pair to be counted as correct.

In addition to finding the most likely participant,
sometimes it can be useful to have a ranked list of
possible participants. Thus, we examined whether the
top 3 choices from the ranked list predicted by our al-
gorithm contained the actual participants. The results
are shown in Table[J] Remarkably, the model that uses
combined spatial-temporal information, ranks the ac-



tual participant among the top 3 choices an impressive
90% of the time.

Table 3: Each row shows how often the partial ob-
served events were inferred correct counting correct if
the one of top n inferred pairs had the known gang.
The accuracy in parentheses refer to the accuracy of
random guess

Method Accuracy

68.03% (3.125%)
72.44% (3.125%)
84.72% (6.250%)
89.13% (9.375%)

Spatial Only

Top 1 (Spatial Temporal)
Top 2 (Spatial Temporal)
Top 3 (Spatial Temporal)

6 Conclusion

Buoyed by the availability of large scale geo-coded
data, an increasing number of agencies are adopting
a predictive rather than purely reactive approaches to
law enforcement. Thus, there is a growing need for
efficient computational approaches for modeling com-
plex spatial-temporal data. Here we have described
a preliminary generative model and applied it to the
problem of inferring participants and identities of per-
petrators in violent inter-gang events, based on the
past observations of such attacks. Our results on syn-
thetic and real-world data show that by combining the
temporal process with the spatial process, we achieve
a better estimate. For the real-world data, we tested
our model using the police data on gang crimes in Hol-
lenbeck, and obtained reasonable results. Most prior
crime models relied on maximum likelihood estimation
on the model parameter with the complete set of data.
However, in most cases, we are faced with incomplete
data, without any knowledge of the actual parameters.
The variational EM algorithm suggested here presents
an efficient and reasonably accurate approach for deal-
ing with incomplete data.

It will be interesting to examine other models that can
account for the temporal correlations and clustering
observed in the real-world data. One natural possibil-
ity is to use Hidden Markov Models (HMM) or switch-
ing Markov processes to characterize jumps in the in-
tensity of inter-gang violence. Further work will also
take into account possible impact of law-enforcement
agents on the temporal characteristics of inter-gang vi-
olence. Finally, we would like to note that while the
main focus here was crime prediction, the model pre-
sented here can be generalized broadly to other data
sets that describe geographically distributed sequence
of social interactions between different entities, where
the event depends on the history of its interaction.
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